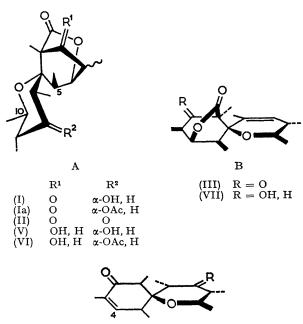
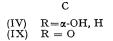
Portentol:¹ A Novel Polypropionate from the Lichen Roccella portentosa

By D. J. ABERHART and K. H. OVERTON*

(Department of Chemistry, University of Glasgow, Glasgow W2)

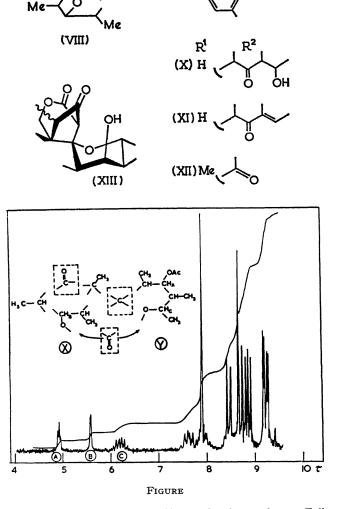
and S. HUNECK


(Institute of Plant Biochemistry, German Academy of Sciences at Berlin, Halle/Saale)


WE have isolated from *Roccella portentosa* (Mont.) Darb. and related lichens a novel polyketide lactone which we name portentol and formulate as (I) on the basis of the following and much additional evidence to be reported elsewhere.

Portentol (I), $C_{17}H_{26}O_5$; † m.p. 260—261°, $[\alpha]_D + 21°$ (CHCl₃ throughout) and the naturally occurring acetate (from *R. fuciformis* DC.) (Ia), $C_{19}H_{28}O_6$, m.p. 223—224°, $[\alpha]_D + 35°$, showed the expected bands in the i.r. $[\nu_{max}$ (CCl₄) (I) 1776 (boat δ -lactone²), 1725 (cyclohexanone), and 3629 (OH) cm.⁻¹; (Ia) 1787, 1735, and 1753 (acetate) cm.⁻¹]. Portentol was oxidised readily to portentone (II), $C_{17}H_{24}O_5$, m.p. 153—154°, $[\alpha]_D + 50°$, but acetylated only with difficulty. Anhydroportentol (III), $C_{17}H_{24}O_4$, m.p. $[\alpha]_{\rm D}$ +78°, and (VII), m.p. 202—204°, $[\alpha]_{\rm D}$ +30° did not. The ketonic carbonyl is therefore necessary for decarboxylation. This requirement and the spectroscopic properties of decarboxyportentol (IV) $[\lambda_{\rm max} 242 \text{ nm.} (\epsilon 5500); \nu_{\rm max}$ (CCl₄) 1675 cm.⁻¹; τ 3·35 (d of qu, 1H, H-4) and 8·82 (s, 3H; vinyl Me)] lead uniquely to the fragment (VIII), derivable from the part structure X in the Figure. When (VIII) is joined to fragment Y of the Figure through the remaining carbon atom, this leads unambiguously to the constitution (I) for portentol.

The decarboxylation products are, predictably, easily aromatised. Thus, for example, decarboxyportentone,


R'O

195—197°, $[\alpha]_D + 92^\circ$ was formed very readily by heating portentol above its melting point or by keeping the acetate at 20° in H₂SO₄-AcOH (1:19). The n.m.r (Figure) and n.m.d.r. spectra (HA 100) of portentol acetate identify the functional sequences X and Y of the Figure which account for all but the ringed fragments.

Portentol, or its acetate, on being heated with KOH (1N, EtOH) under reflux gave decarboxyportentol (IV), $C_{16}H_{26}O_3$, b.p. $120^{\circ}/0.1$ mm, $[\alpha]_{\rm p} + 177^{\circ}$. Portentone (II) and anhydroportentol (III) similarly decarboxylated but the alcohols (V), m.p. $269-271^{\circ}$, $[\alpha]_{\rm p} + 67^{\circ}$, (VI), m.p. $193-194^{\circ}$,

[†] The composition of all compounds is based on high resolution (MS9) mass spectrometry and/or combustion analyses. Full spectroscopic support has been obtained for all compounds even where this is not specifically stated.

(IX), $C_{16}H_{24}O_3$, m.p. 98—100°, $[\alpha]_D$ + 167° gives at 100° with H_2SO_4 - H_2O -EtOH (1:4:5) [via the intermediate (X)] the mesitol (XI), $C_{16}H_{22}O_2$, m.p. 126–127°, $[\alpha]_D \pm 0^\circ$, $[\alpha]_{227nm.}$ -4880°; ν_{max} (CCl₄) 3615, 3500, and 1670 cm.⁻¹ λ_{\max} (MeOH) 223(!) nm. (ϵ 15,400), 285 nm. (2000), moving to 295 nm. (3600) in base; n.m.r. signals at 7 3.19 (1H, s, ArH), 3.67 (1H, qq, vinyl H), and 5.32 (1H, s, phenolic H; D_2O exchangeable). Methylation of (XI) and a three-stage oxidative degradation (OsO₄, NaIO₄, H_2O_2 -OH⁻; all intermediates characterized) afforded the acetophenone (XII), identical with an authentic specimen (obtained from the known³ phenol).

The absolute configuration of portentol (I) derives from the following considerations: (a) detection of a strong (30%)in CDCl₃) NOE⁴ between H-10 and the C-5 methyl group in (Ia); (b) the magnitudes of coupling constants in (I) and (Ia) show that the methyl groups borne by the tetrahydropyran ring must all be equatorial, the hydroxyl axial; (c) the vinyl methyl signals in anhydroportentol (III) and its reduction product (VII) are at τ 8.51 and 8.08 respectively, so that⁵ the tetrahydropyran ring must be attached at the

spiro-centre as shown and not in the diastereomeric sense; (d) the absolute configuration at C-10 [determined by the Horeau method⁶ applied to (X) and its phenolic methyl ether; optical yields 18 and 29%] is R. Of the two configurational alternatives (I) and (XIII) for portentol permitted by this evidence, the observed strongly positive $([\Phi]_{227 nm.} + 4060^{\circ})$ Cotton Effect of the dihydroxylactone (V), points⁷ to (I). An X-ray structure analysis of the pbromobenzoate, m.p. $212-214^{\circ}$, $\lceil \alpha \rceil_D + 51$, of the alcohol (VI) is in progress.

The in vivo formation of portentol apparently via a linear polyketide assembled from one acetate and five propionate units (as is the aglycone portion of the macrolide methymycin⁸), raises interesting questions as to its biosynthesis. Preliminary studies suggest that this may, in some important respects, differ from that of the macrolides.⁸

We thank Mlle. A. Mathey, Rennes and Prof. P. Courtot, Brest, for plant material and the National Research Council of Canada for Fellowship support (to D.J.A.).

(Received, January 1st, 1969; Com. 1649.)

¹ Presented at the 5th IUPAC International Symposium on the Chemistry of Natural Products, London, July 1968; Abstracts p. 110.

² K. K. Cheung, K. H. Overton, and G. A. Sim, Chem. Comm., 1965, 634.

⁸ K. v. Auwers and W. Mauss, Ber., 1928, 61, 1495.

- ⁶ F. A. L. Anet and A. J. R. Bourn, J. Amer. Chem. Soc., 1965, 87, 5250.
 ⁶ G. J. Karabatsos, G. C. Sonnichsen, N. Hsi, and D. J. Fenoglio, J. Amer. Chem. Soc., 1967, 89, 5067.
 ⁶ A. Horeau and H. B. Kagan, Tetrahedron, 1964, 20, 2431; W. Herz and H. B. Kagan, J. Org. Chem., 1967, 32, 216.
 ⁷ J. P. Jennings, W. Klyne, and P. Scopes, J. Chem. Soc., 1965, 7211; G. Snatzke, H. Ripperger, C. Horstmann, and K. Schreiber, transform, 1968, 22, 2103.

Tetrahedron, 1966, 22, 3103.

3 J. R. D. McCormick in "Biogenesis of Antibiotic Substances", ed. Z. Vanek and Z. Hostalek, Publishing House of the Czechoslovak Academy of Sciences, Prague, 1965; H. Grisebach and W. Hofheinz, J. Roy. Inst. Chem., 1964, 332.